

- processes

- lakes, for investigating potential for extrapolation

From concept to practice to policy: Modeling coupled natural and human systems in lake catchments

V. Reilly Henson¹, Kelly M. Cobourn¹, Cayelan C. Carey² ¹Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA; ²Biological Sciences, Virginia Tech, Blacksburg, VA

Model Resolution Input data Ec	focal Output data
	ocal output data
Economic Annual, – Crop yields –	- Ag. land-
optimization representative – Land-use policy	management
farmer	practices
Cycles/Biome- Daily, – Ag. land-management –	- Nutrient leaching
BGC representative practices –	- Crop yields
land unit, soil – Soil moisture	
depth layers – Land-use policy	
Penn State Minute, mesh – Nutrient leaching –	- Soil moisture
Integrated grid cell –	Stream discharge
Hydrologic (~100m) –	- Water temperatures
Model (PIHM) –	- Nutrient
	concentrations
General Lake Hourly, lake, – Stream discharge –	- Water clarity
Model (GLM) dynamic depth – Water temperatures –	- Cyanobacterial
intervals – Nutrient concentrations	blooms
	- Anoxia
Hedonic Multi-year, – Water clarity –	- Water quality price
property value catchment – Cyanobacterial blooms	premium
model – Anoxia	
Institutional Multi-year, – Water clarity –	- Land-use policy
analysis catchment – Cyanobacterial blooms	
– Anoxia	
- Water quality price	
premium	
Scaling up Annual, – Land use –	- CNH linkage
catchment – Water clarity	
- Property values	

CONCLUSION

This project results in an integrated, multi-disciplinary tool that advances cross-disciplinary dialogue that moves CNHS lake catchment modeling in a more systematic direction and provides a foundation for smart decisionmaking and policy.

CITATIONS

work would not be possible.

Table 1. CNHS components and models.

